Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Kannie Wai Yan Chan and Wing Tak Wong*

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

Correspondence e-mail: wtwong@hkucc.hku.hk

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.009 \text{ Å}$ R factor = 0.053wR factor = 0.052 Data-to-parameter ratio = 7.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Hydroxy-3-(p-nitrobenzenesulfonylamino)propylammonium p-nitrobenzenesulfonate

The title compound, [NO₂C₆H₄SO₂NHCH₂CHOHCH₂NH₃]⁺- $[p-NO_2C_6H_4SO_3]^-$ or $C_9H_{14}N_3O_5S^+\cdot C_6H_4NO_5S^-$, was isolated from the reaction between 1,3-diamino-2-hydroxypropane and p-nitrobenzenesulfonyl chloride in CH₂Cl₂. The fairly extensive hydrogen-bond system involving all 'active' H atoms links the ions in the crystal into layers normal to the b axis.

Received 19 July 2002 Accepted 27 August 2002 Online 6 September 2002

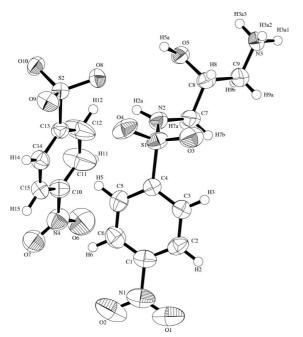
Comment

Nitrobenzenesulfonamide is an efficient protecting reagent for preparing amine derivatives (Fukuyama et al., 1995; Hidai et al., 1999). Under controlled reaction conditions, a monoprotected primary diamine was synthesized selectively and in high yield. The crystal of the title compound, (I), has an ionic structure, built of 2-hydroxy-3-(p-nitrobenzenesulfonylamino)propylammonium cations, [NO2C6H4SO2NHCH2CH-OHCH₂NH₃]⁺, and *p*-nitrobenzenesulfonate anions, [*p*-NO₂-C₆H₄SO₃]⁻, as shown in Fig. 1. The present X-ray diffraction study proved the successful formation of mono-substituted products and provided the first reported crystal structure with cationic mono-protected diamine.

$$O_2N$$
 O_3
 O_3
 O_3
 O_3
 O_3
 O_4
 O_5
 O_5
 O_7
 O_8
 O_8

The S—O and S—N bond lengths in the cation, and the S— O and S—C bond lengths in the anion are comparable to those in similar previously reported molecular fragments (Barrans & Cotrait, 1976; Brunzelle et al., 1999; Cook et al., 1971; Curtis & Pavkovic, 1983; Russell et al., 1994; Takahashi et al., 1998).

There are five 'active' H atoms in the structure of (I), all of which participate in hydrogen bonds of the $N-H\cdots O=S$, $N-H\cdots O(H)$ and $O-H\cdots O=S$ types (Table 2). The N- $H \cdot \cdot \cdot O = S$ and $N - H \cdot \cdot \cdot O(H)$ bonds are in the range 2.809(5)-3.038(5) Å. O5 $-H5A\cdots$ O10 is a fairly strong interaction, with an O···O distance of 2.791 (5) Å and an O— $H \cdot \cdot \cdot O$ angle of 164.85 (18)°, which is typical for 'anionic' O— H···O⁻ hydrogen bonds in the crystal structures of salts (Jeffrey, 1997). These hydrogen bonds link cations and anions into infinite two-dimensional aggregates, i.e. layers parallel to the (010) plane (Fig. 2).


Experimental

1,3-Diamino-2-hydroxypropane (0.2 g) was stirred with p-nitrobenzenesulfonyl chloride (0.5 g) and pyridine in dry CH_2Cl_2 (10 ml) under N₂ at room temperature for 5 h. The reaction mixture was extracted with 5% aqueous HCl solution. The organic phase was

DOI: 10.1107/S1600536802015349

© 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

o1048

Figure 1An *ORTEPII* (Johnson, 1976) drawing of the cation and anion in the structure of (I), showing 50% probability displacement ellipsoids and the crystallographic labelling scheme.

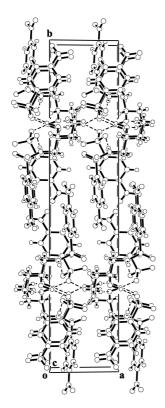


Figure 2
Packing diagram, showing the hydrogen-bonding system.

dried and purified by silica chromatography [elution with CH_2Cl_2 –MeOH, 50:1 (v:v)]. The pale-yellow monosulfonylated diamine was obtained in 75% yield. X-ray quality crystals were obtained by slow

evaporation of a 10 ml solution in CH_2Cl_2 and MeOH in a 3:1 (ν : ν) ratio at room temperature over a few days.

Crystal data

$C_9H_{14}N_3O_5S^+ \cdot C_6H_4NO_5S^-$	$D_x = 1.576 \text{ Mg m}^{-3}$
$M_r = 478.45$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 46
a = 6.7120 (8) Å	reflections
b = 31.392 (1) Å	$\theta = 2.5 - 14^{\circ}$
c = 9.8260 (9) Å	$\mu = 0.33 \text{ mm}^{-1}$
$\beta = 103.170 (5)^{\circ}$	T = 298 K
$V = 2015.9 (3) \text{ Å}^3$	Block, colourless
Z = 4	$0.23 \times 0.20 \times 0.11 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	$R_{\rm int} = 0.049$
diffractometer	$\theta_{\rm max} = 27.5^{\circ}$
φ and ω scans	$h = -8 \rightarrow 5$
12 619 measured reflections	$k = -38 \rightarrow 40$
4629 independent reflections	$l = -8 \rightarrow 12$
1992 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F	H-atom parameters constrained
R = 0.053	$w = 1/[\sigma^2(F_o) + (PF_o)^2]$
wR = 0.052	where $P = 0.0205$
S = 1.19	$(\Delta/\sigma)_{\rm max} < 0.001$
1992 reflections	$\Delta \rho_{\text{max}} = 0.40 \text{ e Å}^{-3}$
280 parameters	$\Delta \rho_{\min} = -0.28 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (\mathring{A} , $^{\circ}$).

S1-O3	1.421 (4)	S2-C13	1.770 (5)
S1-O4	1.436 (4)	O5-C8	1.434 (6)
S1-N2	1.594 (4)	N2-C7	1.457 (6)
S1-C4	1.767 (5)	N3-C9	1.481 (6)
S2-O8	1.452 (3)	C7-C8	1.535 (7)
S2-O9	1.444 (3)	C8-C9	1.468 (7)
S2-O10	1.459 (3)		
O3-S1-O4	120.4 (2)	S1-C4-C3	119.1 (4)
O3-S1-N2	110.0(2)	S1-C4-C5	121.2 (4)
O3-S1-C4	105.9 (2)	N2-C7-C8	109.8 (4)
O4-S1-N2	106.1 (2)	O5-C8-C7	109.0 (4)
O4-S1-C4	107.3 (2)	O5-C8-C9	109.3 (4)
N2-S1-C4	106.3 (2)	C7-C8-C9	111.3 (4)
S1-N2-C7	123.3 (4)	N3-C9-C8	112.7 (4)

Table 2 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
N2−H2 <i>A</i> ···O8	0.95	1.92	2.852 (5)	166
$N3-H3A1\cdots O10^{i}$	0.95	1.91	2.809 (5)	157
$N3-H3a2\cdots O5^{ii}$	0.95	2.12	3.002 (5)	154
N3−H3A3···O5	0.95	2.55	2.871 (5)	100
N3-H3A3···O9iii	0.95	2.14	3.038 (5)	158
$O5-H5A\cdots O10^{ii}$	1.11	1.70	2.791 (5)	165

Symmetry codes: (i) x - 1, y, z - 1; (ii) x, $\frac{1}{2} - y$, $z - \frac{1}{2}$; (iii) x - 1, $\frac{1}{2} - y$, $z - \frac{1}{2}$.

The positions of the H atoms were generated geometrically (C-H and N-H bond lengths fixed at 0.95 Å), with assigned isotropic displacement parameters, and were made to ride on their respective parent C and N atoms before the final cycle of least-squares refinement.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to

organic papers

refine structure: *TEXSAN* (Molecular Structure Corporation, 1992); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *TEXSAN*.

The authors gratefully acknowledge financial support from the Hong Kong Research Grants Council.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Barrans, Y. & Cotrait, M. (1976). Acta Cryst. B32, 2346-2351.
- Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.

- Brunzelle, J. S., Curtis-Palmer, V. A. & Pavkovic, S. F. (1999). *Acta Cryst.* C55, 624–626.
- Cook, R. E., Glick, M. D., Rigan, J. J. & Johnson, C. R. (1971). J. Am. Chem. Soc. 93, 924–928.
- Curtis, V. A. & Pavkovic, S. F. (1983). Acta Cryst. C39, 1077-1078.
- Fukuyama, T., Jow, C. K. & Cheung, M. (1995). *Tetrahedron Lett.* **36**, 6373–6374.
- Hidai, Y., Kan, T. & Fukuyama, T. (1999). *Tetrahedron Lett.* **40**, 4711–4714.
- Jeffrey, A. (1997). *An Introduction to Hydrogen Bonding*. New York: Oxford University Press.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1992). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Russell, V. A., Etter, M. C. & Ward, M. D. (1994). *Chem. Mater.* 6, 1206–1217.
 Takahashi, H., Tamura, R., Ushio, T., Nakajima, Y. & Hirotsu, K. (1998). *Chirality*, 10, 705–710.